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Two finite-difference schemes for the FokkerrPlanck equation in the case of an isotropic 
function of the charge particles are constructed. These schemes are tirst-order accurate with 
respect to time and second-order accurate with respect to E = v2. The schemes conserve the 
number of particles and energy, and the entropy change is nonnegative. A relation between 
the incresing entropy law and the stability of the finite-difference schemes is established. 
1 1987 Academic Press. Inc 

A fully conservative principle for finite-difference schemes is developed by 
Samarski and Popov [I]. The principle means that finite-difference equations 
approximating differential ones must have all conservative laws inherent in the 
starting differential problem. The first of the fully conservative schemes 
approximating isotropic Fokker-Planck equation was published in [2]. 

As shown in [3] the nonconservative difference schemes for calculating plasma 
magnetic traps were not sufftciently accurate, and the fully conservative schemes 
approximating the Fokker-Planck equation for both axis-symmetrical [4, 51 and 
full three-dimensional [6] cases were constructed. These schemes are especially 
good for problems in which such plasma parameters as temperature and density are 
determined by the tails of distribution functions. With the help of the scheme [5, 71 
the parameters of a centrifugal trap were calculated [S]. However, stability and 
convergence of difference schemes for the Fokker-Planck equation have not been 
investigated because of their complexity. 

In this paper we construct two fully conservative schemes for the isotropic 
Fokker-Planck equation not violating the law of increasing entropy and having a 
Maxwellian as an exact steady-state solution. We consider also the relationship 
between the stability of the schemes and increasing entropy. One of the schemes is a 
gradient method maximizing entropy under the condition that both the number of 
particles and the energy are constant. The time step z which gives the increasing 
entropy is obtained in explicit form. The other scheme, being simpler, is suitable for 
constructing an implicit scheme. 
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A three-dimensional Fokker-Planck equation for a closed system of charge 
particles’ in Cartesian coordinates can be written in the following form [9]: 

af 
sr=~~i(f’~-f~)G,,(v,v’)dvf, 

where 

1 
Gdv~ v’) = ,v _ v,, 

f = f(v, t), f’ = f(v’, t), 6,, is the Kronecker delta. 
For the case of an isotropic distribution function the Fokker-Planck equation in 

spherical coordinates is 

af ia r -=-- j (,f’!---f+,~)G(v,v’)vv~‘dv’, at 02 au o 

where 

.f =.f(v, tL .f’ -.f(v’, t). 

In papers [2-51 the variables v, f are independent. It is more convenient to use 
E = v* as the independent variable: then Eq. (1) can be rewritten in the form 

(2) 

where 

.f -f(c, t), f’ =f(E’, t). 

For the sake of convenience, we define the number of particles N, energy E, and 
entropy S by the following formulas 

N = 
s 

cc fE ‘I2 dc, E = 
0 

S= -~OXflnj?‘2ds. 

During the system evolution the values of N and E are constants, and entropy S 
can only increase (Boltzmann’s H-theorem). A Maxwellian is an exact steady-state 

’ For simplicity, we shall consider the particles with the same charge. 
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solution of Eq. (2); it maximizes the entropy S at N, E given [lo]. Conservation 
laws and the principle of increasing entropy are not connected with a concrete form 
of the function g(s, E’). This function is symmetric with respect to E, I’ and non- 
negative (g(s, E’) 2 0). 

A functionf(s, t) is defined on a semifinite interval [0, co). However, to make the 
numerical calculations, it is necessary to use a finite interval [0, ~~1, and the conser- 
vation laws will be valid if we neglect the exponential small fluxes of particles and 
energy through the domain boundaries. Hence, we change the function g(s, E’) as 
follows: 

g(e, E’) = i(E3’Z + &1312 - lE3’2 - &‘3’2)) q?(E) (P(&‘), 

where (P(E)= 1 --v(E-&~) is a step function (V(X) =0 at x60, q(x)= 1 at .u>O). 
Then we can rewrite Eq. (2) for the finite interval [IO, E,,], 

with the following boundary condition 

6’) (.ff ;-,fg) g(E, E’) dd /,=, :,, = 0. 

Equation (3) is considered as a basis for constructing our fully conservative linite- 
difference schemes. Let {E, ,:2=(i- 1/2)/z, i= 1, 2 )...) I, I/r=&); t”=nr, n=o, l)... 1 
be a mesh and .f:J,,j2=.f(~i+li2, t"), f:'=~(f:'~~,,2+.f‘:I+,:2), i= ,,...,I- 1, 
g,,, = ~h3/2(i3,‘2 + i’3:2 _ Ii”‘_ i’3’2 ( )( 1 - 6,,,)( 1 -S,.,,), i, i’ = 0, l,..., I. We approximate 
Eq. (3) by the following finite-difference scheme 

.f, ‘1+,‘/2 -.f:‘- , 2 =(E; 1>2)~-’ 2p:l-p:l I 

T h ’ 

I-I 
p:‘=;,C, f‘;; .f:+,.,;.f: ,.,_,f:,f~~+,2hf:i~1:2 g,,,h 

i-1 
(4) 

= c (.f:Im,,2f:'+,2-.f:!+, Zf:l-,‘Z)gd, 

,‘= I 

The auxiliary function c.’ is proportional to a flux of particles and equal to zero at 
i = 0, i = I. The mesh function (E, _ ,,2) ‘I2 is required such that the finite-difference 
equation at a fixed i and h + 0 approximates Eq. (3) at E = 0. 

Eq. (3) can be transformed to the form 

ff’g(c,&‘)dE’. (5) 
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We approximate Eq. (5) by the finite-difference scheme (4) with another particle 
flux P, that is, 

f:’ ‘,12 - f:‘- ,,2 = (r) - ,,2 p:’ - p:‘- 1 
z J 112 h ’ 

I- I 
(6) 

P:‘= c 
In f:‘- ,,2 - ln f :- ,,2 In f Y+ I/2 - In f Y + ,/2 

h h 
f;f;gi,h. 

;’ = 1 

Equations (4) and (6) are first-order accurate with respect to time t and second- 
order accurate with respect to the energy variable E, except in the neighborhood of 
E=O, where it is first-order accurate with respect to E. The number of particles N, 
system energy E and entropy S for our schemes are defined by the formulas 

N= i f; ,/AC, ,o)“‘k E= i f:‘p ,/2&,+ ,,dE,+ ,,2)“2h> 
,=I /=I 

S= -i f:‘p,j,lnf:.. ,,2(E, ,lz)“2h, 
,=I 

It is easily to show that Eqs. (4) and (6) are fully conservative. We can verify it for 
Eq. (6) as follows: 

f+ i (p:‘-py ,)=P,-P,=O, 
,=I 

T= i (P;!-P:‘~~,)E,+,,~= -‘f’P;h 
,=I ,=I 

In f :! + ,,2 - In f :‘- ,,2 
= 

In f ;+ ,l2 - In f :‘- ,,2 

h - h 
f ;f; g,,.h2 = 0. 

The last equality is valid due to the antisymmetrical dependence of the expression 
in the brackets on indices i, i’. The Maxwellian (fiP,,2)M=aexp( --h~;~,,~), where 
a, h are constants, is an exact steady-state solution of the finite-difference equations 
(4) and (6). The coefficients a, b are determined by the number of particles and 
energy 

N=a i exp( -bEi- ,,2)(Fi~m ,,2),i2h, E = u i exp( -bei- ,,2) E,_ ,,2(E, ,,2)“2h. 
i= I ,=I 

From the physical point of view it is clear that the values E,, and h must be chosen 
such a way that inequalities Nh < E < NE, are satisfied. In this case 
a 1: 2n “2N(3N/(2E))3’2, h N 3N/(2E). 
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Equation (6) can be considered as a gradient method maximizing entropy S at 
the number of particles N and energy E constant. Noting that 

(grad S),= -(ln f:'p,,,2+ l)(E,+ ,12)‘!2h, 

lnf~+,~2-lnf~~,,2= -h~~‘[(E,+,~2))‘~2(gradS”),+, 

- (E,~ ,,.z))“2(grad S”);] 

we can write Eq. (6) as follows: 

F ‘I + I = F” + tL* grad s”, (7) 

where F; =,f:- ,,,2, i = I,..., Z, and L” is a matrix with the elements 

1~ I 

Q;,,=h-'hi, c f:.f;rg,,h-f:'f::g,,,, 
k=l 

i, i’ = 0, 1 )...) I. 

To reduce Eq. (6) to the form (7) note that the integrodifferential equation (2) can 
be transformed to a “gradient” form 

where SS/Sf' = -(ln f' + I )(E’)“~ is a variational derivative of an entropy and 

L(&,,f‘; F’, f')= (Ed) -';? ,ff”g(&, t?‘)d&” -fjC'g(E, E') 1 
The matrix L” is symmetric and nonnegative. A set of vectors 5, for which the 
quadratic form (5, L”c) is equal to zero, is a two-dimensional linear subset with the 
basis e,, e,. The components e,,= h(c,+ ,,2)“2, ez, = hciP ,,‘z(E, ,i2)“2 are indepen- 
dent of time t”. A projection of the vector F” to the vector e, determines the num- 
ber of particles N = C!=, f ;- ‘,2(Cim 1;2)‘12h, and a projection of the vector F” to the 
vector e, determines the system energy E = C,‘=, f ;- ,,2~,+ ,lz(C, ,:2)“2h. 

An entropy change is nonnegative if time step 5 is small enough. Indeed, 
s rr+’ = S(F”+‘) = S”+z(grad S”, L”grad Y)+ O(7') = S”+tA + ~37~). Using 
properties of the matrix L”, it can be shown that A is strong positive for the non- 
Maxwellians (if A = 0 then grad s” = me, + Se, hence ,f” = fM). Therefore S”+ ’ >/ S” 
at small time step T. If the inequality 

~~ = max I(f:'+,,2-f:'m ,:z)iif:'l < I I 
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holds, the time step r guaranteeing incresing entropy for Eq. (6) can be obtained in 
the following explicit form (see the Appendix): 

r<r,=jb”h”/max (EiP,,z))“2 i i(g,,,.+giP,.i)i:‘h]. (8) 
j’= ’ 

The value h” z 1 at ti” small2 Numerical calculations show that inequality (8) is 
necessary also for stability. The right side of (8), R 2 /2’/(4NE)“‘, is independent of 
the values f;, therefore the incresing entropy on every time step is nonnegative at 
z < h2/(4NE) . I’* To prove that condition (8) is sufficient for stability is not a simple 
task, we will publish a proof at a later date. 

Analysis of Eq. (7) is easier when the system state is near equilibria. In this case 
F” = F, + 6F”, F,, = a exp( -hsim 1,2), and only the linear terms with respect to 
6F” remain in (7): 

6F “+ ’ z 6F” - zL,C2 6F”. (9) 

Here L, is L” matrix calculated for F” = F,, C is the diagonal matrix with the 
main diagonal elements c,, = [h(Ei- ,,2)“2(F,,)-‘]“2. The deviation from an 
equilibrium state at t” with the initial deviation 6F” is defined as 

6F” = C ‘(I- &,)“C 6F”, 

i,=CL,C, 

here I denotes a unit matrix. At z <r. = 2/&,,,,(&,,, is the maximal eigenvalue of 
the nonnegative matrix E,) the deviation from an equilibrium state 6F” obviously 
approaches zero as n -+ co. This time step limitation is a stability condition for the 
explicit scheme (7) when the system is near equilibria. It can be shown easily that 
this condition coincides with the increasing entropy condition (8) for F” = F,. 
Consider the reasons that make it possible to calculate simply the maximal 
allowable time step, with the system approaching equilibria. When z exceeds r. 
instability appears mainly due to the fast oscillation part of the mesh function 

6. :‘- l/2 ’ Hence, only the term containing the second finite-difference derivative with 
respect to E should be left in (9). Therefore, for the first approximation the time step 
limitation is the same as in the case of the explicit scheme approximating equation 

-$3f=D(s)gdi D(E) = E - I” 1; f,,,Je’) g(t, E’) dc’. 

The explicit scheme is known to be stable at T < 5. = h2[2 max, D(E)] -‘. A small 
increase in r. causes the local instability (in the vicinity of the point of maximum 
D(E)) to increase exponentially: 

df:'- If2 - (1 - 2z/ro)“( - l)j exp[ -(eiP ,,* --E*)~//~], 

I= h1’*[2D(&*)/p”(&*)I]“4, 

’ More accurately, the value b” = (1 - O.W)( 1 + 4~“)~ ’ at x” < 1 

(10) 
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here E* is the point of maximum D(E). To calculate our case: z,=0.77h2/(NE)r’*, 
E* =2.26/b, I= l.l(h/b)“2; constant b is defined by the Maxwellian, 
f,,,, = a exp( -be). 

It is possible to write Eq. (4) in the form similar to (7); that is, 
F ’ + ’ = F” + rL”U”, where 

u; = -y(E, ,2)‘,‘2h, 

[ 

r-l 

w= - Y+ c (f:r,,/, -f:~:L,,*)lf:: (EiL,,2P2k 
I'= 1 1 

y is a constant. For the non-Maxwelhans (U”, L’U”) > 0. As in the case of Eq. (6) 

s ‘I+’ = S” + z(grad s”, LNUn) + 0(r*). 

The inequality (grad s”, L’U”) 3 (U”, L’U”) holds always, therefore S,l+’ > S” at 
small time step z. The value of t,, for Eq. (4) is defined by Eq. (8). On the basis of 
Eq. (4) it is easily to construct an implicit scheme convenient for numerical 
calculations. 

Numerical experiments illustrate a relationship between the law of an increasing 
entropy and stability of Eqs. (4) and (6). The qualitative considerations of the 
initiation of the scheme instability near a Maxwellian are valid in the case of any 
smooth distribution function. The time of scheme instability (10) development near 
the maximum of the diffusion coefficient 

D(E, t) = (l/G) [‘Of.(Ej, f)R(&, e’) Lis’ 
0 

is significantly smaller than the characteristic time of the coefficient change. Using 
the principle of “frozen” coefficients and the von Neumann spectral method [ 111 
one can obtain the following restriction on a time step 

h’ 

’ < ‘* = 2 max D(E, t)’ 

This coincides with Eq. (8) which guarantees incresing entropy. 
For the calculations we make use of Eq. (6) in the interval [0, so], Ed = 5 with the 

mesh size h = 0.025 and the time step 0.7h2/(NE)“’ 6 r < 0.8h*/(NE)“*. The initial 
function is 

f,(~)=0.716(1 +a)/(1 +a’). (11) 

Initially 

max D(E, 0) = D(E*, 0) = 0.71 (IVE)‘/*. 

at E* = 1.21, and r, =0.7h2/(NE)“2. Calculations are made with z = 0.75h2/(NE)’ 2 
that is 7% more than t,. Note that the numerical instability development described 
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FIG. I. (a) Time dependence of the entropy obtained by the scheme (6). (b) Entropy difference 
as a function of time obtained by schemes (6) and (4). (c) Entropy difference as a function of time 
obtained by the scheme (6) and the nonconservative scheme. 

above takes place in the limit h + 0. At a finite mesh size h the picture has a more 
complex character. When the ripples on the interval of the distribution function 
decrease monotonicaly, the value TV increases from 0.7h2/(NE)“* to 0.72h2/(NE)“‘, 
and the point of diffusion coefftcient maximum changes from E* = 1.21 to 1.36. The 
location domain differs from the theoretical value (10) and equals l= 0.21. After 288 
iterations, decreasing entropy begins. The ripple amplitudes equal about one third 
of the value of the phone distribution function. At T = 0.7h2/(NE)1’2 the calculations 
are stable, and the entropy grows monotonically (Fig. la). Similar results were 
obtained by Eq. (4) at z ~0.7h’/(NE)‘,~: the entropy grows monotonically, but 
slower than in the case of Eq. (6). In Fig. lb the time dependence of the difference 
AS = S, - S, for the initial distribution function ( 11) given above is depicted. Here 
S, is an entropy calculated by Eq. (6) and S,, by Eq. (4). At large time this dif- 
ference goes to zero because these schemes have a Maxwellian as a steady-state 
solution. Using a nonconservative scheme (e.g., the scheme not conserving an 
energy) the behavior of entropy is qualitatively different. In Fig. lc the time depen- 
dence of the difference dS= S, - S3 for the same initial distribution functionfO(c) is 
depicted. Here S, is the entropy calculated by the nonconservative scheme similar 
to [ 121.’ Numerical dissipation of energy [2, 31 results in lower growth of entropy. 
After time t > 1.17, entropy decreases, and the system goes off the sought steady 
state. This indicates that application of nonconservative schemes is inadequate. 

’ The scheme was written in the variables E, I; it conserves the number of particles in the finite interval 
co, E”l. 



CONSERVATIVE FINITE-DIFFERENCE SCHEME 171 

APPENDIX 

(1) At T < ~~ (Eq. (8)) it can be shown that 

b”zmax I(.f‘;Z,~r-,/: ,,*))f:‘- ,,*I 6 2k.y 1 + 2Kf’l ‘, (Al 1 
i 

where 

K” = mix I Lf:‘, , .* - .f,’ I ,2 )lf:‘I 
I 

Indeed, using Eq. (6) produces 

I.f’:“‘,12-.f:’ IJK,Q) I 

Since 

and 

max 
k 

therefore 

<W(l +$(K”)*)< 2i? 
1 +4h? 1 t 2/d” 

(2) At ii” < 1 it can be shown that 

s ‘I+ ’ - s” > z(grad s”, L” grad Y)( 1 - 0.5( 1 + 8”) t$,,,). (AZ) 

Here I.;,, is a maximal eigenvalue of the matrix z” = CL”C”, where c” is a 
diagonal matrix with the elements C;= [h(~~_ 112)“2(j”:_ ,I2) ‘I”“. For the auxiliary 
function q(x)= [(I +x)ln(l +x)-x1+x-* used below inequality 0 Q p(x) f 
4( 1 + 6) holds at x 3 -6, 6 < 1. Let x:‘- ,,2 = (f;- I z -.f:- ,,2)/f;- ,!?, then 
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S ‘I+’ 
i= I 

= - i (f/Y+& -f:J.- ,,2)W.f:‘- ,,2 + 1 )(L 112)“2h- i f:‘.. ,izdxl- ,J 
I=1 i=l 

x (xr-- ,,2)2(K 1,2) “2h 2 - i (.fr.I!& -fr- ,,2)(lnf:p ,,2 + l )tEi- 1/2)“2h 

,=I 

-$(l +6”) i (f:‘,:2 -.f:‘- ,,2)2(c 1,2P2W- l/2)-‘. 

,=I 

Using (7) and expressions for grad s” and c” the estimate can be rewritten 

S ” + ’ - S’ > r(grad S”, L” grad Sn) -i (1 + cY) 1 C”L” grad S”I 2. 

Thus (A2) holds. 

(3) At time t<min[t,, 2( 1 + 6”) ‘(&,)) ‘1 the system entropy is not 
decreasing, that is S”+ ’ 3 S”. This statement is a consequence of the formula (A2) 
because at such a time step t the value of 6” < 1. 

(4) For the maximal eigenvalue of matrix L”, the following estimate is 
obtained: 

4 1 + 2K’l 
E*;,x d - max 

h2 1-0.5~” k 
(Ek ~ ,i.2)- I” + g,- I,,,)f? . 

1 
(A3) 

The maximal eigenvalue i&, of matrix 2” equals the maximal eigenvalue of matrix 
(C”)‘L”. Let x be the eigenvector of matrix (C”)2Ln corresponding to the maximal 
eigenvalue ?&X. Then A;,, x = ( C”)2L’1x. Using a determination of the matrix L” for 
components of the vector y defined by the equalities yi=xi(E,- l,r))“2 one can 
obtain 

P,(y)= c 
' ' L'j+ 'h- " f y f y  g,ch _ '2' "'+ ;- Y"fyfy g,.h. 

j' = , I'= 1 

Let us denote the first sum in P,(y) as P,,(y) and the second as Pz,(y). It is easy to 
make the estimate 
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The estimate for IPzi(y) - Pzip ,(y)l one can derive in this WaY 

I- I 

-(f:‘-fl-I) c (Y,,+,-Y,,).f:!gd . 
,‘- ] 

= (&;‘* - F;/*,)f:‘(fy I’, -.f;- ,1’,) 

I~- I 
+ (&!‘2 -E;‘!‘,)f:’ c y,,(f;:.-f:‘.-~,) 

,‘=tfl 
f-1 

- (f;’ - fl. , ) c ( I’,, + I - .Y,,).f;! gi I.,’ 
,‘= I 

< m;x I y,l . 
[ 

($” - $2, j.f:‘(.f:‘+.f’; ,) 

I- I 
+ ($Q - &j:2, ) ,f:’ 2 I,f;! - ,f‘y , I 

,,=r+ I 
I I 

+2lf’:‘-,f:‘YII C f‘:‘si 1.i’ 
,‘=I 1 

At I> 2/x’ (in reality the number of mesh points 1% 2/x”) the inequality 

.f’:‘+f;’ , < 3li” y f;! 
,‘= I 

holds. Noting also that 

I./-i! -,f{! , ( < OsK’yfy +,f;’ 

If:' -f :' , I < ti'l( 1 - OSti”) 

one can obtain the final estimate for I P2, - P,, ~~ ,I, 

(Ej’2 - c:j:f] ) 3K” 1 ,f;! 
i’ = , 

+ (E;‘*-&;‘*) K’l c .f::+2K’7,,;, .f;:g;& ,.,‘I 
j’ = , 

f !’ 
I- l/2 

1 - 0.5K”’ 
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Therefore, for all i, 

and the estimate (A3) holds. 

(5) Using formulas (A3) and (Al) it is easy to show that 
5. < 2( I + 6”) ‘(3&,) ‘. From this relation one obtains the following statement: 

At z < T”, where T” is defined by formula (8), a system entropy does not decrease 
s ‘I+ ’ 3 s” (the equality is possible if only ,f“’ -,fM). 
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